
SCALING DRUPAL TO THE CLOUD WITH DOCKER
AND AWS

Dr. Djun Kim

Camp Pacific

OUTLINE

➤ Overview

➤ Quick Intro to Docker

➤ Intro to AWS

➤ Designing a scalable application

➤ Connecting Drupal to AWS services

➤ Intro to Amazon ECS (Elastic Container Service)

OVERVIEW

We’re OK launching a site with Acquia, Pantheon, Platform.sh
or another hosted service.

OR…

We’re OK setting up a site on a hosted server (on AWS,
Rackspace, Linode, Digital Ocean, …)

BUT…

We’d like to understand how to build a scalable cloud site using
AWS services.

THE PLAN…

1. Build a simple containerized site

1.1. Build an all-in-one Drupal site in a Docker container

1.2. Deploy (by hand) to an AWS server

2. Extend to use AWS services

2.1. Database

2.2. Cacheing

2.3. File Storage

THE PLAN…

3. Scale out

3.1. Set up a load balancer

3.2. Add instances

4. Automate

4.1. Set up repository

4.2. Set up ECS cluster

4.3. Set up Task definition

DOCKER - WHAT IS IT?

• A way to package services (e.g. web applications) as self-
contained, runnable, environment agnostic containers, easy
to manage and deploy.

• A way to manage configuration at scale (e.g., need 100
identical LAMP stacks, need to spin up 10 new ones NOW)

• Fast, lightweight compared to VM virtualized environments

• If I build a container, it should run identically on my laptop
or in a big cluster on the cloud.

1. SIMPLE DOCKER EXAMPLE - LET’S BUILD A DRUPAL

Find a pre-configured Docker image that has apache, php, mysql,
memcache, Drupal pre-installed. Just fire it up and browse to the
URL.

Configure, add some modules, make a beautiful theme.

To deploy, load it up on an AWS instance and run.

1. SIMPLE DOCKER EXAMPLE - STEP BY STEP
Get "official" docker image

See docs: https://hub.docker.com/_/drupal/

docker pull drupal:7

wait while it builds

docker images

Should see “drupal”. Now run it:

docker run --name simple-docker -p 8080:80 -d drupal

Install Drupal - use local sqlite DB

Save changes as a new image

docker commit some-drupal simple-docker-v01

Save images as a tarball

docker save simple-docker-v01 > simple-docker-v01.tar

INTRO TO AWS

Amazon Web Services

Create an account. You need a credit card. But much of what you need to do
in terms of experimenting/learning is free/cheap.

The first thing we’ll want is an instance - a virtual server. You can configure
these in all shapes and sizes.

Log in to AWS and head on over to the AWS EC2 (elastic compute cloud)
dashboard. Click on launch instance. For our present purposes, we can
select an AMI image and a t2.micro instance (small/free). Make sure we
assign a public IP address. Assign appropriate security groups.

Authentication is via SSL certs. Store the cert AWS generates for you safely.
Make sure you understand how to configure SSH to use appropriate SSL
keys/certs for logging into your instances.

1.2 SIMPLE DOCKER EXAMPLE - DEPLOY TO AWS

Move to host

%local: scp -i your-key simple-docker-v01.tar ec2-user@xx.xx.xx.xx:/home/ec2-user/

%local: ssh -i your-key ec2-user@xx.xx.xx.xx

Verify that docker is installed on your instance. If not, can install it via
‘sudo yum docker’.

%aws-instance: docker -v

Docker version 1.12.6, build 7392c3b/1.12.6

%aws-instance: docker load < simple-docker-v01.tar

Verify that the image is there

%aws-instance: docker images

Now run it

%aws-instance: docker run --name example -p 80:80 -d simple-docker

mailto:ec2-user@xx.xx.xx.xx

PROS & CONS

Pros

➤ Simple, no config

➤ Self-contained

Cons

➤ Need to use this as a base to allow any significant
customization (e.g. adding code)

➤ Too many services in one container

➤ Doesn’t scale

2. USING AWS SERVICES - ARCHITECTURE

Load
Balancer

Web server

Web server

Database
service

Application
Cache service

File
Server

HTTP

HTTP

HTTPS
requests

2.0 GETTING READY

➤ The Plan: take our site container, externalize the services:

➤ Separate container for DB (more on this later)

➤ Separate container for Caching service (redis)

➤ Decouple the files from the container providing the web
server

➤ Once this is working locally, we can replace the DB, Caching
component, and File sharing with AWS services, without
changing our Drupal/webserver container at all.

2.0 HOW? DOCKER-COMPOSE (FOR LOCAL)

➤ Setting up multi-container apps is possible with just plain
docker, by linking, using shared volumes, etc. But it’s not
convenient.

➤ Enter docker-compose. Comes with Docker.app

➤ Best illustrated via an example

➤ Note: this example is based on the wodby/docker4drupal
project

DOCKER-COMPOSE.YML
version: "2"

services:

 drupal:

 image: pnwds_ecs_demo

 env_file:

 - .env
 ports:

 - "80:80"

 volumes:

 - ./docroot:/var/www/html

 mariadb:

 image: wodby/drupal-mariadb

 environment:
 MYSQL_RANDOM_ROOT_PASSWORD: 1

 # The simple way to override the mariadb config:

 MYSQL_DATABASE: ${DB_NAME}

 MYSQL_USER: ${DB_USER}
 MYSQL_PASSWORD: ${DB_PASS}

 volumes:

 - ./docker-runtime/mariadb:/var/lib/mysql
 - ./docker-runtime/mariadb-init:/docker-entrypoint-initdb.d

 redis:
 image: redis:3.2-alpine

2.0 DOCKER-COMPOSE FILE - COMMENTARY

➤ The docker-compose file defines three services

➤ The web-head (drupal). This is a custom built docker image.

➤ The database service (mariadb). OTS Dockerhub image

➤ The caching service (redis). OTS Dockerhub image

➤ Files are shared between our local file system and the containers
via volumes.

➤ The drupal service gets parameters passed in via an environment
file (.env). This is a way of passing in secrets.

➤ The mariadb service gets parameters passed in from the
environment (e.g. ${DB_NAME}). There’s better ways to do this in
production.

2.0 RUN THE SITE LOCALLY
http://docker4drupal.org/
git clone git@github.com:Wodby/docker4drupal.git

cd docker4drupal/

Have a look at docker-compose.yml file

less docker-compose.yml

Download drupal and move it to docroot/

drush dl drupal-7.51
mv drupal-7.51 docroot

Create the docker-runtime directory

mkdir docker-runtime

Copy a pre-existing Drupal DB into the mariadb-init directory

mkdir docker-runtime/mariadb-init

mv ~/pnwdsdemo.sql ../docker-runtime/mariadb-init/

Tweak the docker-compose file
emacs docker-compose.yml

Put our DB credentials into the Drupal settings file

emacs docroot/sites/default/files/settings.php

Launch docker compose

docker-compose up -d

Visit the site
open http://localhost

localhost:

Thank you!

djun.kim@camppacific.com

@djun_kim (twitter)

mailto:djun.kim@camppacific.com

GISTS

• Note: these are from an earlier version of this presentation - they’re a little
more elementary in terms of assumed docker knowledge

• GET Docker.app
https://gist.github.com/djun-kim/5927705923305af1168a6bce517212f3

• Monolithic container
https://gist.github.com/djun-kim/a11d6c15025019f39c805ee70ad57f35

• Docker compose app
https://gist.github.com/djun-kim/e80274cd65b6edd464b73db3acba445d

• Sample Docker-compose.yml file
https://gist.github.com/djun-kim/5475923e2d6e3a2a7d372b9041ced56c

https://gist.github.com/djun-kim/5927705923305af1168a6bce517212f3
https://gist.github.com/djun-kim/a11d6c15025019f39c805ee70ad57f35
https://gist.github.com/djun-kim/e80274cd65b6edd464b73db3acba445d
https://gist.github.com/djun-kim/5475923e2d6e3a2a7d372b9041ced56c

